Differential Transcendence of Iterative Logarithms

نویسنده

  • MATTHIAS ASCHENBRENNER
چکیده

We show that the iterative logarithm of the power series ez − 1 is differentially transcendental over the ring of convergent power series.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcendence Measures for Exponentials and Logarithms

In the present paper, we derive transcendence measures for the numbers log a, e, aP, (log aj)/(log 02) from a previous lower bound of ours on linear forms in the logarithms of algebraic numbers. Subject classification (Amer. Math Soc. (MOS) 1970): 10 F 05, 10 F 35

متن کامل

On the transcendence of certain Petersson inner products

‎We show that for all normalized Hecke eigenforms $f$‎ ‎with weight one and of CM type‎, ‎the number $(f,f)$ where $(cdot‎, ‎cdot )$ denotes‎ ‎the Petersson inner product‎, ‎is a linear form in logarithms and‎ ‎hence transcendental‎.

متن کامل

Tannakian Duality for Anderson-drinfeld Motives and Algebraic Independence of Carlitz Logarithms

We develop a theory of Tannakian Galois groups for t-motives and relate this to the theory of Frobenius semilinear difference equations. We show that the transcendence degree of the period matrix associated to a given t-motive is equal to the dimension of its Galois group. Using this result we prove that Carlitz logarithms of algebraic functions that are linearly independent over the rational f...

متن کامل

Julia’s Equation and Differential Transcendence

We show that the iterative logarithm of each non-linear entire function is differentially transcendental over the ring of entire functions, and we give a sufficient criterion for such an iterative logarithm to be differentially transcendental over the ring of convergent power series. Our results apply, in particular, to the exponential generating function of a sequence arising from work of Shad...

متن کامل

Algebraic Relations among Periods and Logarithms of Rank 2 Drinfeld Modules

For any rank 2 Drinfeld module ρ defined over an algebraic function field, we consider its period matrix Pρ, which is analogous to the period matrix of an elliptic curve defined over a number field. Suppose that the characteristic of the finite field Fq is odd and that ρ does not have complex multiplication. We show that the transcendence degree of the field generated by the entries of Pρ over ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015